
International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2080
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

EFFICIENT INDEXING TECHNIQUES ON DATA
WAREHOUSE

Bhosale P., Bidkar N, Hirave T., Kanase P., Magar M.

Abstract— Recently, data warehouse system is becoming more and more important for decision-makers. Most of the queries against a large data
warehouse are complex and iterative. The ability to answer these queries efficiently is a critical issue in the data warehouse environment. If the right
index structures are built on columns, the performance of queries, especially ad hoc queries will be greatly enhanced. In this paper, we provide an
evaluation of indexing techniques being studied/used in both academic research and industrial applications.

Index Terms— Data warehouse, Indexing, Information Storage and Retrieval, P+ tree, R* tree, OLTP, Database.

—————————— ——————————

1 INTRODUCTION
 Data warehouse (DW) is a large repository of
information accessed through an Online Analytical
Processing (OLAP) application. This application

provides users with tools to iteratively query the DW in order
to make better and faster decisions. The information stored in
a DW is clean, static, integrated, and time varying, and is
obtained through many different sources. Such sources might
include Online Transaction Processing (OLTP) or previous
legacy operational systems over a long period of time.
Requests for information from a DW are usually complex and
iterative queries. Complex queries could take several hours or
days to process because the queries have to process through a
large amount of data.

In the last 25 years many indexing techniques have
been proposed for the efficient storage and retrieval of
multidimensional data. For the one-dimensional case, the
ubiquitous B+ tree has been incorporated in all commercial
and open source database management systems. Many more
sophisticated data structures have been proposed to handle
the problem of manipulating in an efficient manner enormous
sizes of multidimensional data. Most of them try to solve

problems concerning range queries and k nearest neighbour
(kNN) queries. Difficulties arise in higher dimensions where
the problem of the so called “dimensionality curse” has the
effect that the higher the dimension in question the more these
index structures behave like or even worse than the sequential
scan in solving problems like similarity search queries.
 These indexing methods usually take advantage of
many factors like the manner that space is occupied by the
data in question or some characteristics of the way that data
space is decomposed that can lead to translating the
multidimensional problem into a single-dimensional one that
can be efficiently handled by a B+tree. First, we survey some
of the most notable indexing structures that have been
proposed in the literature, especially the R*tree (successor of
R-tree), the Hybrid tree , the P+tree and the iDistance , and
then we try to study and investigate through experimentation
various factors that influence these indexes when used to
solve kNN queries. These factors are the data dimensionality
and the size of the indexed data that usually arise in real
world datasets.

2 PURPOSE OF WORK
Requests for information from a DW are usually complex and
iterative queries. Such complex queries could take several
hours or days to process because the queries have to
process through a large amount of data. A majority of
requests for information from a data warehouse involve
dynamic ad hoc queries. Users can ask any question at any
time for any reason against the base table in a data
warehouse. The ability to answer these queries quickly is a
critical issue in the data warehouse environment.

Among the various solutions such as summary
tables, indexes, parallel machines, etc. to speed up query
processing, Indexing is the best key to overcome this
problem.

3 TECHNOLOGIES AND METHODOLOGY

3.1 DATABASE

The term or expression of database originated within the
computer industry. A possible definition is that a database
is a structured collection of records or data which is stored
in a computer so that a program can consult it to answer
queries. The records retrieved in answer to queries become
information that can be used to make decisions. The
computer program used to manage and query a database is
known as a Database Management System (DBMS). The
central concept of a database is that of a collection of
records, or pieces of knowledge. Topically, for a given
database, there is a structural description of the type of facts
held in that database: this description is known as a
schema. The schema describes the objects that are
represented in the database, and the relationships among
them. There are a number of different ways of organizing a

A

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2081
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

schema, that is, of modelling the database structure: these
are known as database models (or data models). The model
in most common use today is the relational model that
represents all information in the form of multiple related
tables each consisting of rows and columns. This model
represents relationships by the use of values common to
more than one table. The term database refers to the
collection of related records, and the software should be
referred to as the database management system or DBMS.
When the context is unambiguous, however, many
database administrators and programmers use the term
database to cover both meanings. Database management
systems are usually categorized according to the data
model that they support: relational, object-relational,
network, and so on. The data model will tend to determine
the query languages that are available to access the
database. A great deal of the internal engineering of a
DBMS, however, is independent of the data model, and is
concerned with managing factors such as performance,
concurrency, integrity, and recovery from hardware
failures.

 3.2 DATA WAREHOUSE
 Data warehousing is a collection of decision support
technologies, aimed at enabling the knowledge worker
(executive, manager, and analyst) to make better and faster
decisions. A data warehouse is a “subject-oriented,
integrated, time varying, non-volatile collection of data that
is used primarily in organizational decision making.”1
Typically, the data warehouse is maintained separately
from the organization’s operational databases. There are
many reasons for doing this. The data warehouse supports
on-line analytical processing (OLAP), the functional and
performance requirements of which are quite different from
those of the on-line transaction processing (OLTP)
applications traditionally supported by the operational
databases.

Fig. Data warehouse

 Figure 1 shows a typical data warehousing

architecture. It includes tools for extracting data from
multiple operational databases and external sources; for

cleaning, transforming and integrating this data; for
loading data into the data warehouse; and for periodically
refreshing the warehouse to reflect updates at the sources
and to purge data from the warehouse, perhaps onto
slower archival storage. In addition to the main warehouse,
there may be several departmental data marts. Data in the
warehouse and data marts is stored and managed by one or
more warehouse servers, which present multidimensional
views of data to a variety of front end tools: query tools,
report writers, analysis tools, and data mining tools.
Finally, there is a repository for storing and managing
metadata, and tools for monitoring and administering the
warehousing system. The warehouse may be distributed for
load balancing, scalability, and higher availability. In such a
distributed architecture, the metadata repository is usually
replicated with each fragment of the warehouse, and the
entire warehouse is administered centrally. An alternative
architecture, implemented for expediency when it may be
too expensive to construct a single logically integrated
enterprise warehouse, is a federation of warehouses or data
marts, each with its own repository and decentralized
administration. Designing and rolling out a data warehouse
is a complex process, consisting of the following activities.
• Define the architecture, do capacity planning, and select
the storage servers, database and OLAP servers, and tools.
• Integrate the servers, storage, and client tools.
• Design the warehouse schema and views.
• Define the physical warehouse organization, data
placement, partitioning, and access methods.
• Connect the sources using gateways, ODBC drivers, or
other wrappers.
• Design and implement scripts for data extraction,
cleaning, transformation, load, and refresh.
• Populate the repository with the schema and view
definitions, scripts, and other metadata.
• Design and implement end-user applications.
• Roll out the warehouse and applications.

 3.3 INDEXING TECHNIQUES

Recently, data warehouse system is becoming more and
more important for decision-makers. Most of the queries
against a large data warehouse are complex and iterative.
The ability to answer these queries efficiently is a critical
issue in the data warehouse environment. If the right index
structures are built on columns, the performance of queries,
especially ad hoc queries will be greatly enhanced. In this
project, we provide an evaluation of indexing techniques
being studied/used in both academic research and
industrial applications. In addition, we identify the factors
that need to be considered when one wants to build a
proper index on base data.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2082
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

There are many solutions to speed up query
processing such as summary tables, indexes, parallel
machines, etc. However when an unpredicted query arises,
the system must scan, fetch, and sort the actual data,
resulting in performance degradation. Whenever the base
table changes, the summary tables have to be recomputed.
Also building summary tables often supports only known
frequent queries, and requires more time and more space
than the original data. Because we cannot build all possible
summary tables, choosing which ones to be built is a
difficult job. Moreover, summarized data hide valuable
information. For example, we cannot know the
effectiveness of the promotion on Monday by querying
weekly summary. Indexing is the key to achieve this
objective without adding additional hardware.

We attempt a fair comparison of many state of the
art indexing structures designed exclusively to index multi-
dimensional points like the Hybrid tree, B-tree, Projection
index, Bitmap index, Pure Bitmap index, iDistance and the
P+tree. We include in our comparison the R*tree, a state of
the art index designed both for multidimensional points
and regions. It is an improvement of the well-known R-tree,
and also has been revised and improved further recently[1].
There are some indexing techniques. Some of them are as
follows:

 B-Tree Index

 The B-Tree Index is the default index for most relational
database systems. The top most level of the index is called
the root. The lowest level is called the leaf node. All other
levels in between are called branches. Both the root and
branch contain entries that point to the next level in the
index. Leaf nodes consisting of the index key and pointers
pointing to the physical location (i.e., row ids) in which the
corresponding records are stored.

 Bitmap Index

 The bitmap representation is an alternate method of the
row ids representation. It is simple to represent, and uses
less space- and CPU-efficient than row ids when the
number of distinct values of the indexed column is low. The
indexes improve complex query performance by applying
low-cost Boolean operations such as OR, AND, and NOT in
the selection predicate on multiple indexes at one time to
reduce search space before going to the primary source
data.

Pure Bitmap Index

Pure Bitmap Index was first introduced and implemented
in the Model 204 DBMS. It consists of a collect of bitmap
vectors each of which is created to represent each distinct

value of the indexed column. A bit i in a bitmap vector,
representing value x, is set to 1 if the record i in the indexed
table contains x. To answer a query, the bitmap vectors of
the values specified in the predicate condition are read into
memory. If there are more than one bitmap vectors read, a
Boolean operation will be performed on them before
accessing data. Most of commercial data warehouse
products (e.g., Oracle, Sybase, Informix, Red Brick, etc.)
implement the Pure Bitmap Index.

Join Index

A Join Index is built by translating restrictions on the
column value of a dimension table (i.e., the gender column)
to restrictions on a large fact table. The index is
implemented using one of the two representations: row id
or bitmap, depending on the cardinality of the indexed
column.

P –tree

 An entry in an internal node of the P-tree has the form
<K,Pr>, where K is an entry key and Pr is the pointer to a
child of the node. An entry key K of length l(≥1) has the
format of #i.c1.c2………cl, where #i is the id of a level-0 list
in the list database and ci(≥1) is the position offset of a level-i
list, explained below. T(Pr) denotes the subtree under
branch Pr. Entry keys can have different length l so that
nesting depth of lists can grow and shrink dynamically
anywhere in a list.

 4 RESEARCH METHODOLOGY

4.1 P+ TREE
The basic idea of the P+-tree is to divide the space into
subspaces and then apply the Pyramid technique in each
subspace. To realize this, we first divide the space into
clusters which are essentially hyper rectangles. We then
transform each subspace into a hypercube so that we can
apply the Pyramid technique on it. At the same time, the
transformation makes the top of the pyramids located at the
cluster center. Assuming that real queries follow the same
distribution as data, most of the queries would be located
around the top of the pyramids, that is, the “good
position”. Even if some queries may be located at the corner
or edge of the cluster and therefore causes a large region to
be accessed, the data points accessed are not prohibitively
large because most of the data points are gathered at the
cluster center. In addition, the region accessed by a query is
significantly reduced by space division. Thus, the P+-tree
can alleviate the inefficiencies of the Pyramid technique.
We note that although we cluster the space into subspaces,

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 2083
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

our scheme also works for uniform data since uniform data
is a special case of clustered data. While uniform data does
not benefit from the transformation, dividing the space into
subspaces is still an effective mechanism for performance
improvement. To facilitate building the P+-tree and query
processing, we need an auxiliary structure called the space-
tree, which is built during the space division process. The
leaf nodes of the space-tree store information about the
transformation. We will first introduce the data
transformation, so that readers know what information is
stored. Then, we present the space division process. At last,
we show how the P+-tree is constructed.

4.2 R* TREE
R*-trees are a variant of R-trees used for indexing spatial
information. R*-trees support point and spatial data at the
same time with a slightly higher cost than other R-trees. It
was proposed by Norbert Beckmann, Hans-Peter Kriegel,
Ralf Schneider, and Bernhard Seeger in 1990.

 The R*-tree is a data partitioning structure that
indexes MBRs (minimum bounding rectangles). The
minimization of both coverage and overlap of the MBRs
influences the performance of R* tree. When overlap occurs
on data query or insertion, more than one branch of the tree
needs to be expanded and traversed (due to storage
redundancy). When the coverage is minimized this has the
effect of improving pruning performance, so whole pages
are excluded from search more often.

The R*-tree attempts to reduce both, with a
combination of a revised node split algorithm and the
concept of forced reinsertion when nodes overflow. This is
based on the observation that R-tree structures are highly
sensitive to the order in which their entries are inserted, so
an insertion-built (rather than bulk-loaded) structure is
likely to be sub-optimal. So the deletion and reinsertion of
some entries allows them to "find" a place in the tree that
may be more appropriate than their original location. When
a node overflows, a portion of its entries are removed from
the node and reinserted into the tree. This produces better-
clustered groups of entries in nodes, with the effect that
node coverage is reduced. Furthermore, actual node splits
are often postponed, causing average node occupancy to
become higher. Re-insertion can be seen as a method of
incremental tree optimization triggered on node overflow.

R*-Tree built by repeated insertion (in ELKI). There
is little overlap in this tree, resulting in good query
performance. Red and blue MBRs are index pages, green
MBRs are leaf nodes. Minimization of both coverage and
overlap is crucial to the performance of R-trees. Overlap
means that, on data query or insertion, more than one
branch of the tree needs to be expanded (due to the way
data is being split in regions which may overlap). A
minimized coverage improves pruning performance,

allowing to exclude whole pages from search more often, in
particular for negative range queries.

The R*-tree attempts to reduce both, using a
combination of a revised node split algorithm and the
concept of forced reinsertion at node overflow. This is
based on the observation that R-tree structures are highly
susceptible to the order in which their entries are inserted,
so an insertion-built (rather than bulk-loaded) structure is
likely to be sub-optimal. Deletion and reinsertion of entries
allows them to "find" a place in the tree that may be more
appropriate than their original location.

When a node overflows, a portion of its entries are
removed from the node and reinserted into the tree. (In
order to avoid an indefinite cascade of reinsertions caused
by subsequent node overflow, the reinsertion routine may
be called only once in each level of the tree when inserting
any one new entry.) This has the effect of producing more
well-clustered groups of entries in nodes, reducing node
coverage. Furthermore, actual node splits are often
postponed, causing average node occupancy to rise. Re-
insertion can be seen as a method of incremental tree
optimization triggered on node overflow.

5 CONCLUSION

In this paper we have proposed various indexing
techniques. Some of which are more efficient for data
warehouse such as P+ and R* tree, which are briefly
describe in this paper for the purpose of further
implementation.

REFERENCES
[1] Rui Zhang Beng Chin Ooi Kian-Lee Tan “Making the Pyramid
Technique Robust to Query Types and Workloads” Department of
Computer Science National University of Singapore, Singapore 117543

 [2] Nikolaos Kouiroukidis, Georgios Evangelidis “Efficient indexing
methods in the data mining context” Department of Applied Informatics,
University of Macedonia 156 Egnatia Str., Thessaloniki, 54006, Greece

[3] Sirirut Vanichayobon, Le Gruenwald “Indexing Techniques for
Data Warehouses’ Queries” School of Computer Science Norman, OK,
73019

[4] Surajit Chaudhuri Microsoft Research, Redmond, Umeshwar Dayal
 Hewlett-Packard Labs, Palo Alto “An Overview of Data Warehousing
and OLAP Technology”

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/R-tree
http://en.wikipedia.org/wiki/Hans-Peter_Kriegel
http://en.wikipedia.org/wiki/Environment_for_DeveLoping_KDD-Applications_Supported_by_Index-Structures

	1 Introduction
	2 Purpose of work
	3 Technologies and methodology
	3.2 Data warehouse
	3.3 Indexing techniques
	4 Research Methodology
	4.1 P+ tree
	4.2 R* tree
	5 Conclusion
	References

